3.8.35 \(\int \frac {x^2}{(a+b x^3)^{2/3} (c+d x^3)} \, dx\) [735]

3.8.35.1 Optimal result
3.8.35.2 Mathematica [A] (verified)
3.8.35.3 Rubi [A] (verified)
3.8.35.4 Maple [A] (verified)
3.8.35.5 Fricas [B] (verification not implemented)
3.8.35.6 Sympy [F]
3.8.35.7 Maxima [F(-2)]
3.8.35.8 Giac [A] (verification not implemented)
3.8.35.9 Mupad [B] (verification not implemented)

3.8.35.1 Optimal result

Integrand size = 24, antiderivative size = 145 \[ \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx=-\frac {\arctan \left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )}{\sqrt {3} \sqrt [3]{d} (b c-a d)^{2/3}}-\frac {\log \left (c+d x^3\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac {\log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}} \]

output
-1/6*ln(d*x^3+c)/d^(1/3)/(-a*d+b*c)^(2/3)+1/2*ln((-a*d+b*c)^(1/3)+d^(1/3)* 
(b*x^3+a)^(1/3))/d^(1/3)/(-a*d+b*c)^(2/3)-1/3*arctan(1/3*(1-2*d^(1/3)*(b*x 
^3+a)^(1/3)/(-a*d+b*c)^(1/3))*3^(1/2))/d^(1/3)/(-a*d+b*c)^(2/3)*3^(1/2)
 
3.8.35.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.12 \[ \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx=-\frac {2 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )-2 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )+\log \left ((b c-a d)^{2/3}-\sqrt [3]{d} \sqrt [3]{b c-a d} \sqrt [3]{a+b x^3}+d^{2/3} \left (a+b x^3\right )^{2/3}\right )}{6 \sqrt [3]{d} (b c-a d)^{2/3}} \]

input
Integrate[x^2/((a + b*x^3)^(2/3)*(c + d*x^3)),x]
 
output
-1/6*(2*Sqrt[3]*ArcTan[(1 - (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3 
))/Sqrt[3]] - 2*Log[(b*c - a*d)^(1/3) + d^(1/3)*(a + b*x^3)^(1/3)] + Log[( 
b*c - a*d)^(2/3) - d^(1/3)*(b*c - a*d)^(1/3)*(a + b*x^3)^(1/3) + d^(2/3)*( 
a + b*x^3)^(2/3)])/(d^(1/3)*(b*c - a*d)^(2/3))
 
3.8.35.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {946, 70, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx\)

\(\Big \downarrow \) 946

\(\displaystyle \frac {1}{3} \int \frac {1}{\left (b x^3+a\right )^{2/3} \left (d x^3+c\right )}dx^3\)

\(\Big \downarrow \) 70

\(\displaystyle \frac {1}{3} \left (\frac {3 \int \frac {1}{x^6+\frac {(b c-a d)^{2/3}}{d^{2/3}}-\frac {\sqrt [3]{b c-a d} \sqrt [3]{b x^3+a}}{\sqrt [3]{d}}}d\sqrt [3]{b x^3+a}}{2 d^{2/3} \sqrt [3]{b c-a d}}+\frac {3 \int \frac {1}{\frac {\sqrt [3]{b c-a d}}{\sqrt [3]{d}}+\sqrt [3]{b x^3+a}}d\sqrt [3]{b x^3+a}}{2 \sqrt [3]{d} (b c-a d)^{2/3}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{3} \left (\frac {3 \int \frac {1}{x^6+\frac {(b c-a d)^{2/3}}{d^{2/3}}-\frac {\sqrt [3]{b c-a d} \sqrt [3]{b x^3+a}}{\sqrt [3]{d}}}d\sqrt [3]{b x^3+a}}{2 d^{2/3} \sqrt [3]{b c-a d}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac {3 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{3} \left (\frac {3 \int \frac {1}{-x^6-3}d\left (1-\frac {2 \sqrt [3]{d} \sqrt [3]{b x^3+a}}{\sqrt [3]{b c-a d}}\right )}{\sqrt [3]{d} (b c-a d)^{2/3}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac {3 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{d} \sqrt [3]{a+b x^3}}{\sqrt [3]{b c-a d}}}{\sqrt {3}}\right )}{\sqrt [3]{d} (b c-a d)^{2/3}}-\frac {\log \left (c+d x^3\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}+\frac {3 \log \left (\sqrt [3]{b c-a d}+\sqrt [3]{d} \sqrt [3]{a+b x^3}\right )}{2 \sqrt [3]{d} (b c-a d)^{2/3}}\right )\)

input
Int[x^2/((a + b*x^3)^(2/3)*(c + d*x^3)),x]
 
output
(-((Sqrt[3]*ArcTan[(1 - (2*d^(1/3)*(a + b*x^3)^(1/3))/(b*c - a*d)^(1/3))/S 
qrt[3]])/(d^(1/3)*(b*c - a*d)^(2/3))) - Log[c + d*x^3]/(2*d^(1/3)*(b*c - a 
*d)^(2/3)) + (3*Log[(b*c - a*d)^(1/3) + d^(1/3)*(a + b*x^3)^(1/3)])/(2*d^( 
1/3)*(b*c - a*d)^(2/3)))/3
 

3.8.35.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 70
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2) 
, x] + (Simp[3/(2*b*q)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] + Simp[3/(2*b*q^2)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 946
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^n], 
x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m - n 
+ 1, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.8.35.4 Maple [A] (verified)

Time = 4.50 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.05

method result size
pseudoelliptic \(\frac {-2 \arctan \left (\frac {\sqrt {3}\, \left (2 \left (b \,x^{3}+a \right )^{\frac {1}{3}}+\left (\frac {a d -b c}{d}\right )^{\frac {1}{3}}\right )}{3 \left (\frac {a d -b c}{d}\right )^{\frac {1}{3}}}\right ) \sqrt {3}+2 \ln \left (\left (b \,x^{3}+a \right )^{\frac {1}{3}}-\left (\frac {a d -b c}{d}\right )^{\frac {1}{3}}\right )-\ln \left (\left (b \,x^{3}+a \right )^{\frac {2}{3}}+\left (\frac {a d -b c}{d}\right )^{\frac {1}{3}} \left (b \,x^{3}+a \right )^{\frac {1}{3}}+\left (\frac {a d -b c}{d}\right )^{\frac {2}{3}}\right )}{6 d \left (\frac {a d -b c}{d}\right )^{\frac {2}{3}}}\) \(152\)

input
int(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x,method=_RETURNVERBOSE)
 
output
1/6*(-2*arctan(1/3*3^(1/2)*(2*(b*x^3+a)^(1/3)+(1/d*(a*d-b*c))^(1/3))/(1/d* 
(a*d-b*c))^(1/3))*3^(1/2)+2*ln((b*x^3+a)^(1/3)-(1/d*(a*d-b*c))^(1/3))-ln(( 
b*x^3+a)^(2/3)+(1/d*(a*d-b*c))^(1/3)*(b*x^3+a)^(1/3)+(1/d*(a*d-b*c))^(2/3) 
))/d/(1/d*(a*d-b*c))^(2/3)
 
3.8.35.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 415 vs. \(2 (114) = 228\).

Time = 0.33 (sec) , antiderivative size = 927, normalized size of antiderivative = 6.39 \[ \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx=\left [-\frac {3 \, \sqrt {\frac {1}{3}} {\left (b c d - a d^{2}\right )} \sqrt {-\frac {{\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}}}{d}} \log \left (\frac {b^{2} c^{2} - 4 \, a b c d + 3 \, a^{2} d^{2} - 2 \, {\left (b^{2} c d - a b d^{2}\right )} x^{3} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, {\left (b x^{3} + a\right )}^{\frac {2}{3}} {\left (b c d - a d^{2}\right )} - {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}} {\left (b c - a d\right )} + {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} {\left (b x^{3} + a\right )}^{\frac {1}{3}}\right )} \sqrt {-\frac {{\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}}}{d}} + 3 \, {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}} {\left (b x^{3} + a\right )}^{\frac {1}{3}} {\left (b c - a d\right )}}{d x^{3} + c}\right ) + {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} \log \left (-{\left (b x^{3} + a\right )}^{\frac {2}{3}} {\left (b c d - a d^{2}\right )} - {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}} {\left (b c - a d\right )} + {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} {\left (b x^{3} + a\right )}^{\frac {1}{3}}\right ) - 2 \, {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} \log \left (-{\left (b x^{3} + a\right )}^{\frac {1}{3}} {\left (b c d - a d^{2}\right )} - {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}}\right )}{6 \, {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}}, \frac {6 \, \sqrt {\frac {1}{3}} {\left (b c d - a d^{2}\right )} \sqrt {\frac {{\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}}}{d}} \arctan \left (-\frac {\sqrt {\frac {1}{3}} {\left ({\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}} {\left (b c - a d\right )} - 2 \, {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} {\left (b x^{3} + a\right )}^{\frac {1}{3}}\right )} \sqrt {\frac {{\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}}}{d}}}{b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}}\right ) - {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} \log \left (-{\left (b x^{3} + a\right )}^{\frac {2}{3}} {\left (b c d - a d^{2}\right )} - {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {1}{3}} {\left (b c - a d\right )} + {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} {\left (b x^{3} + a\right )}^{\frac {1}{3}}\right ) + 2 \, {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}} \log \left (-{\left (b x^{3} + a\right )}^{\frac {1}{3}} {\left (b c d - a d^{2}\right )} - {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}^{\frac {2}{3}}\right )}{6 \, {\left (b^{2} c^{2} d - 2 \, a b c d^{2} + a^{2} d^{3}\right )}}\right ] \]

input
integrate(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x, algorithm="fricas")
 
output
[-1/6*(3*sqrt(1/3)*(b*c*d - a*d^2)*sqrt(-(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^ 
3)^(1/3)/d)*log((b^2*c^2 - 4*a*b*c*d + 3*a^2*d^2 - 2*(b^2*c*d - a*b*d^2)*x 
^3 + 3*sqrt(1/3)*(2*(b*x^3 + a)^(2/3)*(b*c*d - a*d^2) - (b^2*c^2*d - 2*a*b 
*c*d^2 + a^2*d^3)^(1/3)*(b*c - a*d) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^ 
(2/3)*(b*x^3 + a)^(1/3))*sqrt(-(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)/d 
) + 3*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)*(b*x^3 + a)^(1/3)*(b*c - a 
*d))/(d*x^3 + c)) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log(-(b*x^3 
+ a)^(2/3)*(b*c*d - a*d^2) - (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)*(b* 
c - a*d) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*(b*x^3 + a)^(1/3)) - 
2*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log(-(b*x^3 + a)^(1/3)*(b*c*d 
- a*d^2) - (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)))/(b^2*c^2*d - 2*a*b* 
c*d^2 + a^2*d^3), 1/6*(6*sqrt(1/3)*(b*c*d - a*d^2)*sqrt((b^2*c^2*d - 2*a*b 
*c*d^2 + a^2*d^3)^(1/3)/d)*arctan(-sqrt(1/3)*((b^2*c^2*d - 2*a*b*c*d^2 + a 
^2*d^3)^(1/3)*(b*c - a*d) - 2*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*(b 
*x^3 + a)^(1/3))*sqrt((b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(1/3)/d)/(b^2*c^ 
2 - 2*a*b*c*d + a^2*d^2)) - (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log( 
-(b*x^3 + a)^(2/3)*(b*c*d - a*d^2) - (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^( 
1/3)*(b*c - a*d) + (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*(b*x^3 + a)^( 
1/3)) + 2*(b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)*log(-(b*x^3 + a)^(1/3) 
*(b*c*d - a*d^2) - (b^2*c^2*d - 2*a*b*c*d^2 + a^2*d^3)^(2/3)))/(b^2*c^2...
 
3.8.35.6 Sympy [F]

\[ \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx=\int \frac {x^{2}}{\left (a + b x^{3}\right )^{\frac {2}{3}} \left (c + d x^{3}\right )}\, dx \]

input
integrate(x**2/(b*x**3+a)**(2/3)/(d*x**3+c),x)
 
output
Integral(x**2/((a + b*x**3)**(2/3)*(c + d*x**3)), x)
 
3.8.35.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 
3.8.35.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.52 \[ \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx=\frac {{\left (-b c d^{2} + a d^{3}\right )}^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}} + \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}}}\right )}{\sqrt {3} b c d - \sqrt {3} a d^{2}} + \frac {{\left (-b c d^{2} + a d^{3}\right )}^{\frac {1}{3}} \log \left ({\left (b x^{3} + a\right )}^{\frac {2}{3}} + {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} + \left (-\frac {b c - a d}{d}\right )^{\frac {2}{3}}\right )}{6 \, {\left (b c d - a d^{2}\right )}} - \frac {\left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \log \left ({\left | {\left (b x^{3} + a\right )}^{\frac {1}{3}} - \left (-\frac {b c - a d}{d}\right )^{\frac {1}{3}} \right |}\right )}{3 \, {\left (b c - a d\right )}} \]

input
integrate(x^2/(b*x^3+a)^(2/3)/(d*x^3+c),x, algorithm="giac")
 
output
(-b*c*d^2 + a*d^3)^(1/3)*arctan(1/3*sqrt(3)*(2*(b*x^3 + a)^(1/3) + (-(b*c 
- a*d)/d)^(1/3))/(-(b*c - a*d)/d)^(1/3))/(sqrt(3)*b*c*d - sqrt(3)*a*d^2) + 
 1/6*(-b*c*d^2 + a*d^3)^(1/3)*log((b*x^3 + a)^(2/3) + (b*x^3 + a)^(1/3)*(- 
(b*c - a*d)/d)^(1/3) + (-(b*c - a*d)/d)^(2/3))/(b*c*d - a*d^2) - 1/3*(-(b* 
c - a*d)/d)^(1/3)*log(abs((b*x^3 + a)^(1/3) - (-(b*c - a*d)/d)^(1/3)))/(b* 
c - a*d)
 
3.8.35.9 Mupad [B] (verification not implemented)

Time = 9.17 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.47 \[ \int \frac {x^2}{\left (a+b x^3\right )^{2/3} \left (c+d x^3\right )} \, dx=\frac {\ln \left (3\,d^2\,{\left (b\,x^3+a\right )}^{1/3}-\frac {9\,a\,d^3-9\,b\,c\,d^2}{3\,d^{1/3}\,{\left (a\,d-b\,c\right )}^{2/3}}\right )}{3\,d^{1/3}\,{\left (a\,d-b\,c\right )}^{2/3}}+\frac {\ln \left (3\,d^2\,{\left (b\,x^3+a\right )}^{1/3}-\frac {\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )\,\left (9\,a\,d^3-9\,b\,c\,d^2\right )}{6\,d^{1/3}\,{\left (a\,d-b\,c\right )}^{2/3}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,d^{1/3}\,{\left (a\,d-b\,c\right )}^{2/3}}-\frac {\ln \left (3\,d^2\,{\left (b\,x^3+a\right )}^{1/3}+\frac {\left (1+\sqrt {3}\,1{}\mathrm {i}\right )\,\left (9\,a\,d^3-9\,b\,c\,d^2\right )}{6\,d^{1/3}\,{\left (a\,d-b\,c\right )}^{2/3}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,d^{1/3}\,{\left (a\,d-b\,c\right )}^{2/3}} \]

input
int(x^2/((a + b*x^3)^(2/3)*(c + d*x^3)),x)
 
output
log(3*d^2*(a + b*x^3)^(1/3) - (9*a*d^3 - 9*b*c*d^2)/(3*d^(1/3)*(a*d - b*c) 
^(2/3)))/(3*d^(1/3)*(a*d - b*c)^(2/3)) + (log(3*d^2*(a + b*x^3)^(1/3) - (( 
3^(1/2)*1i - 1)*(9*a*d^3 - 9*b*c*d^2))/(6*d^(1/3)*(a*d - b*c)^(2/3)))*(3^( 
1/2)*1i - 1))/(6*d^(1/3)*(a*d - b*c)^(2/3)) - (log(3*d^2*(a + b*x^3)^(1/3) 
 + ((3^(1/2)*1i + 1)*(9*a*d^3 - 9*b*c*d^2))/(6*d^(1/3)*(a*d - b*c)^(2/3))) 
*(3^(1/2)*1i + 1))/(6*d^(1/3)*(a*d - b*c)^(2/3))